The “Fairfax Sandblows” Site (VT-FR-64): New Evidence about a Michaud/Neponset Paleoindian Site in the Champlain Basin

by Francis “Jess” W. Robinson IV and John G. Crock

Abstract

While conducting archival research as part of a thorough reanalysis of the Reagan site, new information about the enigmatic “Fairfax Sandblows” site (VT-FR-64) was uncovered. Although not voluminous, the new information provides some minimal context to the site and has enabled the authors to plot its general location. Moreover, the information has enabled the authors to construct a plausible narrative of the site’s discovery and also to tentatively ascribe several additional artifacts to the site. Interestingly, the research also suggests that the “Fairfax Sandblows” site may have been the first Paleoindian site in New England reported to professional archaeologists, though interest in the site never progressed beyond Fisher’s overtures to the American Museum of Natural History.

Introduction

Prior to the early 1990s, the “Fairfax Sandblows” site (VT-FR-64) was one of only a few localities in Vermont from which more than a single Paleoindian projectile point was known to have been recovered (Loring 1980). As part of his work assiduously documenting artifact collections from around the state, Stephen Loring rediscovered the four fluted projectile points that, at that time, formed the “Fairfax Sandblows” assemblage in the Benjamin W. Fisher collection at the University of Vermont (UVM). The collection had been donated to the UVM Fleming Museum earlier in the century (Loring 1980). No other documentation existed in the Anthropology Department or Fleming Museum archives to give a precise provenience to the artifacts, however. As such, Loring could only surmise from their labeling, “Fairfax, VT.” and from oblique references in letters archived in the Fleming that they came from “sandblows” or destabilized sand deposits in that town (Loring 1980; see Loring 1978: VT-F R-64 Vermont Archaeological Site Form - Vermont Division for Historic Preservation (VDHP) Archives).

While conducting archival research as part of a thorough re-analysis of the Reagan site, the senior author acquired copies of a number of letters written by or to Fisher from the American Museum of Natural History (AMNH), the New York State Museum (NYSM), and the Fleming Museum. Contained within these letters is a series of references to the Fairfax Sandblows site. Although not voluminous, they provide enough detail to offer a minimal context to the site. Moreover, they have enabled the construction of a plausible narrative of the site’s discovery and also the tentative ascription of several additional artifacts to the site. Interestingly, the research also suggests that the Fairfax Sandblows site may have been the first Paleoindian site in New England reported to professional archaeologists, though interest in the site never progressed beyond Fisher’s overtures to the AMNH.

A Revised History of the Fairfax Sandblows Site

Claims involving the discovery of sites produced by “Early Man” occurred fairly regularly during the early part of the 20th century. None withstood serious scientific scrutiny, however, until the discoveries at Folsom were examined by a series of researchers and proved legitimate in 1927 (Boldurian and Cotter 1999; Meltzer 1993). Recognizing the profound significance of the finds at Folsom, Barnum Brown, who had earlier in the century made a name for himself as the discoverer
of the first *Tyrannosaurus rex* skeleton, immediately worked to disseminate the discovery and its implications to both a scholarly and general audience (Boldurian and Cotter 1999:8; see Brown 1928). As Brown was only tangentially involved in the excavations at Folsom, however, and failed even to recognize principal investigator J. D. Figgins in many of his popular press releases, subsequent generations of archaeologists have not looked particularly fondly on him (Boldurian and Cotter 1999:8). Nevertheless, it was due to the tireless promotion of the Folsom discoveries by Brown that Benjamin Fisher made the connection between the projectile points uncovered at Folsom and the ones he had earlier seen from Fairfax, Vermont.

Except for his connection to the Reagan site, little is known about Benjamin Fisher. Judging from his letters, Fisher was a keen, but not particularly covetous, artifact collector. As his letters concerning Reagan make clear, he was just as eager to understand the character of a site and attempt to elucidate site functions and other details as he was to acquire impressive material for its own sake. He likely began artifact collecting with L. B. Truax, one of Vermont’s most prominent early artifact collectors (Huden 1971:70-77). Truax is perhaps best known as one of the “discoverers” of the Swanton Middlesex cemetery, but his collections, some of which are now housed at the Fleming Museum, contain an abundance of material from a number of other important Vermont archaeological sites (see Huden 1971:70-77). Fisher admits both his interest in sites and his connection to Truax in the following excerpt from a letter contained in the Fleming Museum archives:

> My own collection came largely from Addison and Franklin Counties. The material from the latter county is similar to that of the Truax Collection, as much of it was made in the company of Mr. Truax. Much of it is not suitable for exhibition purposes, as I am more interested in studying sites and cultures than in making a collection. (Fisher to H. B. Eldred, June 15, 1936, Fleming Museum archives).

While there are no Paleoindian artifacts contained within the portion of the Truax collection at the Fleming Museum, and there is no documentary evidence suggesting that he identified a Paleoindian site, it is now reasonably clear that L. B. Truax was the discoverer of the Fairfax Sandblows site. The significance of the site, however, would only be recognized by Fisher.

Although Fisher had no context for the material Truax collected from the Fairfax Sandblows prior to the dissemination of the discoveries at Folsom, the artifacts were clearly intriguing to him. Upon reading an article profiling Brown and the Folsom site in the *New York Herald Tribune* on October 6, 1929, however, Fisher immediately recognized their importance. That night he wrote to Brown:

> In the [New York] Herald Tribune of this date, I find pictures of your discoveries in Folsom. The arrow head with a chip taken the entire length of it, on both sides, after it had been otherwise finished, is of particular interest to me. ... I have known of about a dozen specimens of this same type, taken from one spot in Northern Vermont. Nowhere else in this state, nor in any collection, have I seen anything like it. (Fisher to Brown, Oct. 6, 1929, AMNH Archives).

Whatever his faults may have been, Barnum Brown was also known for his regular correspondence with myriad artifact and fossil collectors from around the country. True to form, a mere eight days later Fisher was writing again to Brown, thanking him for his interest and for a copy of an article Brown had written in 1928 about the Folsom discoveries (Brown 1928). The body of Fisher’s October 14, 1929 letter to Brown is quoted in full below:

> Thank you for your interested letter and copy of “Prehistoric Man in America.” I would have liked to have been a laborer on this expedition.

> The fluted points belong to Mr. L. B. Truax. He
found them, if his memory is correct, in a chipping bed, with flakes of the same material lying [sic] about, which would indicate that they were not trade points. We have always wondered about them, as the material, form and workmanship are different from any specimens we have seen. He has nine in all, some broken, some pieced together, and only two perfect.

They were found on a sand deposit near the Lamoille River, about 14 miles from its mouth, and 100 feet above the river level. The sand is continually shifting, and they may have been uncovered in this process.

Mr. Truax has consented to let me send some of them to you. He wishes them returned, and I am taking it for granted that you will do so. He is an old man, and it will probably be a few days before they get started.

I am anxious to know the result of your comparison. Although a novice in the business, my chief interest is in the traces of early man in the region (Fisher to Brown, October 14, 1929, AMNH archives).

This letter is notable for several reasons. It gives the approximate location and circumstances of the Fairfax Sandblows site and states that there was a “chipping bed” or an abundance of lithic debitage in the area of their recovery. The letter also attests to the fact that Truax was the discoverer of the site and of his ownership of nine fluted points, only two of which were complete.

In a letter written ten days later, upon posting two of Truax’s fluted points to the AMNH, Fisher wrote that debitage recovered from the site was weathered a light color, much like the fluted points he was sending. This suggests that the two fluted points he sent ultimately became two of the four in Fisher’s collection from the Fairfax Sandblows site, as these were made from weathered Mt. Jasper/Jefferson rhyolite (Loring 1980; see Pollock et al. 2008). Fisher also states in the letter that, “three other points of this type were found by another man, at the same location, but scattered.” (Fisher to Brown, October 24, 1929, AMNH archives).

Upon arriving at the AMNH, Brown apparently sent the points to Clark Wissler, then the Curator-in-Chief of the anthropology department, for his advice. This is somewhat ironic, as Brown purported himself to be one of the central authorities on recently legitimized “Early Man” sites. Nevertheless, Wissler returned his impressions of the points to Brown, who was in the field at the time, via an internal memorandum. The memorandum states in part that:

We have examined the points accompanying the correspondence with Mr. Lisher [changed to Fisher in the margin]. The points are quite similar in form to the Folsom specimens. The material is different and the chipping not so fine. There are indications of weathering which might indicate age but we have no satisfactory way of estimating age in terms of weathering (Wissler to Brown, October 30, 1929, AMNH archives).

Despite Wissler’s acknowledgment of their similarity, when Brown returned from the field and examined the points for himself, he concluded that they were more likely Hopewell in origin. He returned them to Fisher with a short reply stating as much. Fisher, however, was undeterred.

Fisher wrote to Brown again approximately six months later, still motivated by his keen interest in Paleoindian sites (and likely encouraged by a copy of Wissler’s memorandum that Brown’s office assistant forwarded to Fisher in Brown’s absence). He began the letter by acknowledging that he had searched the Fairfax locality several times but had never found any material there himself, owing to the shifting sands (subsequent letters to Ritchie do suggest he eventually found material at the site, but no additional projectile points; see below). He stated that farmers of the local area had not found any fluted points either, but had found “other implements” at the site (Fisher to Brown, July 7, 1930,
The rest of the letter contains a fairly detailed description of a site he had begun collecting over several years before, which he felt, owing to the similar conditions, elevation, and artifact forms, also held the possibility of great antiquity. The latter site would come to be called the Reagan site by Ritchie (1953, 1957). Unfortunately for Fisher, by the time of the July 7, 1930 letter, museums and other institutions were beginning to be inundated with letters from people from across the nation claiming to own or know the whereabouts of Paleoindian material (Roberts 1936). As such, Fisher’s sites likely became two among many vying for scholarly attention.

In the correspondence between Ritchie and Fisher over twenty years later, initiated as a result of Ritchie’s study of the Reagan site, Fisher wrote that, barring Reagan, the only other Paleoindian site he knew of was the one in Fairfax. When Ritchie responded excitedly about the possibility of another Paleoindian site in the region in a similar environmental setting, Fisher replied that:

*The site where the fluted points were found is on the Lamoille River. This also has changed, but I have found material in this vicinity [referring to raw material] which resembles that from the Reagan site. The sand shifts rapidly, they are learning to stop these sand blows, so our chances of locating anything are not good, but it will be a pleasure to go there with you. I would like to locate with your help, the fluted points that came from there [in the Fleming Museum] (Fisher to Ritchie, April 20, 1952, NYSM archives).*

It is unclear whether Fisher ever took Ritchie to the Fairfax Sandblows site.

Truax died sometime prior to 1935, only a few years after Fisher’s correspondence with the AMNH. It is unclear how Fisher came to own four of the points from the Fairfax Sandblows site as Fisher’s letters suggest Truax was quite covetous of them. Perhaps they were given as a gift to Fisher, who was obviously passionate about Paleoindian sites. It is possible that the points were simply never returned to Truax after they were sent back from the AMNH, but Fisher seems to only have sent two of the four. In any case, the Truax collection was donated to the Fleming Museum in 1935, after his death, and none of the nine fluted points Fisher claimed Truax once had were in the portion of the collection donated. Moreover, according to the letter Fisher wrote to Ritchie many years later, Fisher seemed to have been under the impression that the other fluted points were in the collection donated to the Fleming, but merely misplaced by the museum.

In fact, although some what conjectural, the authors are now reasonably confident that the five missing fluted points from the Truax collection ended up in the collection of Truax’s son-in-law, Ira A. Manley of Milton, Vermont, who in turn left them to his son, James Manley (Huden 1971:70-77; Loring 1980). Ira Manley was also a prominent artifact collector during the earlier part of the 20th century. After the discoveries at Folsom popularized fluted points and their antiquity, one can imagine that they were in great demand in collector circles, as they are today. It is possible that Truax gave the other five points from the Fairfax Sandblows site to Manley, just as he may have given the four made from Mt. Jasper/Jefferson rhyolite to Fisher. Certainly, there was a family connection. Alternatively, as Truax’s son-in-law, Ira Manley was probably involved in the donation of the Truax collection to UVM, and as such would have been in a position to procure artifacts he particularly coveted.

The VDHP conducted an interview with William A. Ross, another prominent Vermont artifact collector, shortly before his death in the late 1970s. In the interview, he specifically mentions that the Manley collection actually contains much of the Truax collection. As Ross likely knew Truax and both Ira and James Manley, he would have been in a position to know and recognize particular artifacts.

During an interview with Loring in the late 1970s, Ira Manley’s son, James, claimed that he did not know the location of discovery of seven of the fluted points in his collection of nine, as they were
inherited from his father (Loring 1980). Based upon stylistic affinities, their general similarity to the four fluted points donated by Fisher to the Fleming Museum, their overall conformity to a recently recognized Paleoindian projectile point type or modal form (Bradley et al. 2008), and details provided by Fisher regarding the Truax collection from the Fairfax Sandblows site, the authors propose that five of the unprovenienced (or potentially dubiously provenienced) points from the Manley collection studied by Loring are in fact the five missing fluted points from the nine Truax recovered from the Fairfax Sandblows site. These projectile points correspond to Loring’s (1980) Figures 1 and 2, and are depicted in this paper in Figure 1 (1a, 1d, 1f, 1g, and 1h). The attribution of Figure 1a, corresponding
to Loring’s (1980) Figure 2a, is somewhat problematic, however, and will be explored below.

While the rest of this paper will refer to the artifacts just described as one assemblage (with the possible exception of Figure 1a), derived from the Fairfax Sandblows site, no direct evidence has been identified as yet to confirm the provenience of the Manley fluted points, the above exegesis notwithstanding. Moreover, the Manley collection was auctioned and sold in the 1990s and is no longer available for direct study. Thus, while the authors believe the connection is warranted and valid, the provenience of the Manley artifacts must still remain tentative.

The Fairfax Sandblows Assemblage

The four fluted points originally attributed by Loring (1980) to the Fairfax Sandblows site are still housed at the University of Vermont, and are therefore available for direct study by the authors (see Figure 1b, 1c, 1e, and 1i). Although the measurements of Figure 1c, 1e, and 1i largely conform to those reported by Loring (1980), a n articulating piece to the projectile point depicted in Figure 1b has been relocated. This obviously alters the measurements for that projectile point and provides a truer assessment of the projectile point’s total measurements, minus the extreme tip portion. These measurements are provided in Table 1.

Quite fortunately for the present analysis, Dr. James Petersen analyzed the nine fluted points from the Manley collection in 1998 prior to their auction and sale. He also took several high-quality color slide photographs. These images were used by the authors to make the composite image depicted in Figure 1. Petersen’s analysis was done fairly quickly, and his measurements were not as exhaustive as those conducted by Loring (1980). They proved to be important, however, as an additional confirmation of the raw material types indicated to the authors through Petersen’s photographs, and also for cross-referencing with Loring’s notations.

The five artifacts from the Manley collection under consideration in this paper have no previously designated provenience, with the possible exception of the artifact depicted in Figure 1a of this paper. The measurements for these projectile points are taken from Loring’s (1980) Appendix I, and are provided in Table 1. With regard to the projectile point depicted in Figure 1a of this paper, there appears to be a discrepancy between Loring’s (1980) illustration caption within the text, and its designation in his Appendix I. Within the text, the caption underneath the artifact illustration indicates that it was probably recovered from somewhere in Franklin County, while in the appendix the artifact is listed as coming from site VT-CH-107. In the VT-CH-107 site form (Loring 1978: VT-CH-107 Vermont Archaeological Site Form, VDHP Archives), Loring also attributes the artifact to VT-CH-107, a site in Chittenden County.

Because Loring’s (1980) article was written at least a year after the completion of the site forms, it is possible that he revised his attribution of the location of the fluted projectile point by the time of the article. Alternatively, the point may actually not be attributable to the Fairfax Sandblows site, but rather to site VT-CH-107 in Milton. It must be stated, however, that the circumstances under which Manley claimed he recovered the projectile point are rather suspect. He stated to Loring that he came across a fire hearth created by a circle of fire-cracked rock with a large amount of jasper chips within it. It was within this immediate area that he found the point. As ringed fire hearths are not generally known from regional Paleoindian sites and would likely not be preserved intact in any case, the tale may have been an attempt at obfuscation on the part of James Manley. Moreover, the VT-CH-107 site location is well within the limits of the Champlain Sea maximum. While tentative, recent work by the senior author suggests that this site location would have been underwater during the period when this projectile point was likely produced (Robinson 2008; see Bradley et al. 2008).

Because of the marked morphological similarities between the projectile point depicted in Figure 1a, the other Manley artifacts examined in this paper, and the four projectile points from the
Table 1. Attributes for all of the projectile points depicted in Figure 1. Measurements were taken from Loring (1980:Appendix I) except for figure 1b. Material designations are taken from James Petersen’s unpublished notes and from the authors’ own analysis.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Loring Specimen Number (Appendix I)</th>
<th>Material (revised for this analysis)</th>
<th>Length (cm)</th>
<th>Width (cm)</th>
<th>Thickness (cm)</th>
<th>Basal Width (cm)</th>
<th>Width of Flute(s) (cm)</th>
<th>Basal Depth (cm)</th>
<th>Number of Flutes A</th>
<th>Number of Flutes B</th>
<th>Length of Flute A (cm)</th>
<th>Length of Flute B (cm)</th>
<th>Lateral Grinding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>4</td>
<td>Munsungan chert</td>
<td>4.7</td>
<td>1.8</td>
<td>0.6</td>
<td>1.8</td>
<td>1.6</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>2.7</td>
<td>1.6</td>
<td>No Basal Grinding</td>
<td>Two Articulating Pieces</td>
</tr>
<tr>
<td>lb</td>
<td>13</td>
<td>Mt. Jasper/ Jefferson rhyolite</td>
<td>5</td>
<td>2.1</td>
<td>0.5</td>
<td>-</td>
<td>1.2</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>4.1</td>
<td>3.9</td>
<td>Heavy Basal Grinding</td>
<td>Two Articulating Pieces</td>
</tr>
<tr>
<td>le</td>
<td>12</td>
<td>Mt. Jasper/ Jefferson rhyolite</td>
<td>4.9</td>
<td>1.9</td>
<td>0.5</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2.7</td>
<td>3.8</td>
<td>Basal Grinding Evident</td>
<td></td>
</tr>
<tr>
<td>ld</td>
<td>10</td>
<td>Unidentified Black chert</td>
<td>3.2</td>
<td>2</td>
<td>0.5</td>
<td>2</td>
<td>1.4</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>1.6</td>
<td>2.1</td>
<td>Heavy Basal Grinding</td>
<td></td>
</tr>
<tr>
<td>le</td>
<td>14</td>
<td>Mt. Jasper/ Jefferson rhyolite</td>
<td>2.7</td>
<td>1.9</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2.4</td>
<td>Basal Grinding Evident</td>
<td>Heavy Basal and Lateral Edge Grinding Base only</td>
</tr>
<tr>
<td>lf</td>
<td>6</td>
<td>Munsungan chert</td>
<td>1.5</td>
<td>2.6</td>
<td>0.5</td>
<td>2.6</td>
<td>1.5</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Heavy Basal and Lateral Edge Grinding Base and Mid-section</td>
<td></td>
</tr>
<tr>
<td>lg</td>
<td>3</td>
<td>Munsungan chert</td>
<td>3.1</td>
<td>2.3</td>
<td>0.6</td>
<td>2.3</td>
<td>1.4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Heavy Basal and Lateral Edge Grinding Base and Mid-section</td>
<td></td>
</tr>
<tr>
<td>lh</td>
<td>2</td>
<td>Onondaga or Hudson Valley chert</td>
<td>3.3</td>
<td>2.4</td>
<td>0.7</td>
<td>2.4</td>
<td>1.3</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Heavy Basal and Lateral Edge Grinding Base and Mid-section</td>
<td></td>
</tr>
<tr>
<td>li</td>
<td>15</td>
<td>Mt. Jasper/ Jefferson rhyolite</td>
<td>-</td>
<td>2.2</td>
<td>0.5</td>
<td>1.8</td>
<td>1.4</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Heavy Basal and Lateral Edge Grinding</td>
<td></td>
</tr>
</tbody>
</table>
Fisher collection, the authors feel reasonably confident that the point actually belongs to the Fairfax Sandblows assemblage (Table 1; see Loring 1980:25). Moreover, if one includes this projectile point with the morphologically similar projectile point depicted in Figure 1d, these may have been the two complete projectile points that Fisher referenced in his letter.

In addition to providing measurements for all of the artifacts under consideration in this paper, Table 1 also lists revised raw material attributions for each artifact based upon recent raw material research and a better understanding of Paleoindian lithic raw material use since the time of Loring’s (1980) paper. These raw material attributions are explored more fully below.

Based upon macroscopic examination, all of the projectile points or point fragments in the Fisher collection at UVM (Figure 1b, 1c, 1e, and 1i) are made from Mt. Jasper/Jefferson rhyolite, derived from quarries in and around Berlin, New Hampshire. The primary source for the Mt. Jasper material has been known for over a century, as the adit is prominently positioned near to the summit of Mt. Jasper in Berlin, New Hampshire (Gramly 1977, 1980, 1984; Gramly and Cox 1976; Pollock et al. 2008). It was only determined to be the source of the spherulitic rhyolite common in Paleoindian assemblages relatively recently, however (Boisvert 1992; Pollock et al. 2008; Spiess et al. 1998). More recently, Boisvert (1998) discovered similar rhyolite blocks in Jefferson, New Hampshire, which also appears to have been utilized by Paleoindian groups. Although Mt. Jasper rhyolite and the Jefferson rhyolite are similar and are likely of a similar geologic age, there are demonstrable petrographic differences and a significant geographic distance between them (Pollock et al. 2008). As such, the authors can only attribute the projectile points to one of the two sources until additional petrographic or chemical examination has been conducted on them. Moreover, as Loring correctly noted, all of these artifacts are quite ventifacted or “sand blasted” due to prolonged exposure to aeolian processes. This ventifactation has resulted in excessive polish and has obscured the crystal structure of the material somewhat. Ventifactation is also very common among the Reagan artifact assemblage.

Three of the five projectile points or point fragments from the Manley collection that are under consideration here (Figure 1a, 1f, and 1g) macroscopically appear to be made from Munsungan chert, derived from a lakeside quarry source in northern Maine (Pollock 1987, Pollock et al. 1999). Loring (1980) previously suggested that two of these projectile points were made from Colchester jasper, but in light of a large body of research conducted since the publication of Loring’s article, that attribution now seems incorrect. The ascription of red chert in Vermont assemblages to the Colchester Jasper quarry source was a regular practice in the 1970s and 1980s, primarily because a source seemed so close at hand (see Lavin and Prothero 1987; Thomas and Robinson 1980). Other than anecdotal reports of some woodland scraping tools being made from this material, however, there is little evidence of Colchester jasper being used by Native American groups from any recognized precontact period. Since the publication of Loring’s paper, however, the Munsungan chert quarry has been geoarchaeologically examined (Pollock 1987; Pollock et al. 1999), archaeologically explored (Bonnichson 1982), and is now recognized as perhaps the most heavily utilized chert source in northern New England during the Early Paleoindian period (Pollock et al. 1999; Spiess et al. 1998). Moreover, the mottled red and green chert from which the projectile point depicted in Figure 1g is made is characteristic of Munsungan chert, and is a noted variation of the material in some Paleoindian assemblages (e.g., Spiller Farm, Hamilton and Pollock 1996). Petersen, in his brief analysis of the points in the late 1990s, also suggested that the material was Munsungan chert. Therefore, while no petrographic or chemical sourcing was conducted on the artifacts in question, nor would it now be possible, the authors feel confident that the material from which each of the projectile points was made is indeed Munsungan chert.

The final two artifacts, Figure 1d and 1h, are
more difficult to classify based upon the available information. Figure 1h appears to be made from a very fine-grained, greenish gray to darker gray mottled chert. Petersen suggested in his analysis that the material was likely Onondaga chert. While the authors cannot ascribe a source to the artifact based upon the scanty information aggregated here, the overall color and mottling are consistent with Onondaga chert. Minimally, the material was likely derived from a quarry source west of the Champlain Basin.

Figure 1d is a homogenous black chert for which a source attribution cannot be advanced by the authors. The material could have been derived from the Champlain Basin, the Hudson Valley, Munsungan Lake, or elsewhere. Loring (1980) suggested a Champlain Basin origin for the material, which may be accurate. With the possible exception of the quarries identified by Snow in Ft. Anne, New York (Snow 1977, 1979a, 1979b), however, the known quarries of this material would likely have been under the waters of the Champlain Sea during the occupation of the Fairfax Sandblows site, at least as understood thus far.

Finally, since the publication of Loring’s article, researchers in the Northeast have developed a Paleoindian projectile point sub-taxonomy with broad but demonstrable date ranges associated with each “modal form” or type (Bradley et al. 2008; Newby et al. 2005; Spiess et al. 1998). This taxonomy was influenced by an earlier Paleoindian sub-taxonomy developed for the Great Lakes region by Deller and Ellis (1992) and Ellis and Deller (1997).

Based upon the criteria set out by these researchers, all of the points attributed to the Fairfax Sandblows site in this paper correspond to the Michaud/Neponset “phase” of the Early Paleoindian period, ca. 12,000 to 11,600 cal yr BP (10,300 to 10,100 C¹⁴ yr BP) (Bradley et al. 2008). Michaud/Neponset points are named after two notable sites in Maine (Spiess and Wilson 1987) and Massachusetts (Carty and Spiess 1992), respectively. They are directly analogous to Barnes-type points in the Great Lakes region (Deller and Ellis 1992; Ellis and De Gerler 2000; Storck 1997; Wright and Roosa 1966), and may be broadly related to Cumberland points in other parts of the continent.

The reader is referred to Bradley et al. (2008) for a detailed description of the attributes of Michaud/Neponset projectile points relative to other Paleoindian projectile point forms. The authors do wish to note, however, that Michaud/Neponset points are perhaps most conspicuously identified by their basal ears, which are often significantly flared, and the pronounced “flutes” or channel flake scars that usually trend at least half way up the surface of the point, and often all the way to the tip. These characteristics can be readily observed on all of the projectile points depicted in Figure 1.

Under the broader Michaud/Neponset rubric, there appear to be several different variations of the form present in the assemblage. In the top row of Figure 1, all of the projectile points have a general tapered, triangular or “rocket” like shape, with fluid lines trending from the widest point at the basal ears to the tip. The projectile points in the middle row may also be examples of this style, though Figure 1e is quite small and is likely the result of reworking or expediency and Figure 1f is only represented by an eared base. Figure 1a - 1c, which can be assumed to not have been heavily reworked, are still smaller than the average provided by Bradley et al. (2008) for the Michaud/Neponset points, though their measurements relative to each other are strikingly similar. The particular stylistic variation that they represent is not common in the New England region, as far as the authors are aware.

The projectile points depicted in the bottom row appear to be much more similar to the “typical” Michaud/Neponset form. Figure 1i is almost identical to projectile points recovered from the Michaud site (Spiess and Wilson 1987), and Figure 1g and 1h appear quite similar to projectile points recovered from a Paleoindian site on Lac Mégantic in Québec (Chapdelaine 2004, 2007).

Bradley et al. (2008) also note, following work by Ellis and Deller (2000), that Michaud/Neponset points were often manufactured through two distinct processes. In many cases, projectile points were
formed through the reduction of a larger bifacial blank, as is typical of earlier projectile point manufacturing strategies (Callahan 2000). Sometimes, however, Michaud/Neponset projectile points were manufactured directly from thin flakes of suitable dimension (Ellis and Deller 2000). The latter process is readily observed at the Jackson-Gore site in Ludlow, and appears in that case to be a function of material scarcity (Robinson and Crock 2007).

While the authors cannot comment on the manufacturing strategies of the projectile points from the Manley collection, an examination of the projectile points from the Fisher collection suggests that perhaps Figure 1b was in fact produced from a flake. The tip portion is very thin and not fully formed. Although the tip itself is missing, the shape, thickness and break patterns of the tip area suggest that it was blunted, and as perhaps a remnant platform of the flake from which it was produced. The orientation of remnant flake platforms as blunted tips is evident on several bifaces at the Jackson-Gore site (Robinson and Crock 2007). Moreover, it appears that the process of fluting caused the breakage of the tip at two places along the projectile point’s length. These breakage patterns are also evident on two bifaces at the Jackson-Gore site (Robinson and Crock 2007). Whether or not Figure 1b was produced from a flake, it at least appears that the tip was blunted in order to facilitate the fluting process, which in this case ended in failure. It must be noted that the four points from the Fisher collection all exhibit lenticular or biconvex cross-sections, though significantly altered through the fluting process.

Discussion

The Fairfax Sandblows site is significant both for its place in the history of Vermont archaeology and for what it means in terms of early Native American settlement. The site’s “story” places Vermont in the mix following the groundbreaking discoveries at Folsom during one of the most exciting periods of American archaeology. While, at the time, the site did not get the notoriety or attention it deserved, largely due to misinterpretation by Barnum Brown, Benjamin Fisher’s persistent efforts to validate his own interpretations of the site’s antiquity stand as an early example of the tremendous contribution avocational archaeologists have made to Vermont archaeology. The history of the collection and its disposition, however, provide a cautionary tale about the loss to science caused by the fissioning of once intact private collections and the black market sale of artifacts.

Beyond important historical context, and the tentative addition of five more lithic tools to the Fairfax Sandblows assemblage, the research has enabled a more accurate plot of the location of the site. Fisher suggested that the Fairfax Sandblows site was 14 miles from the mouth of the river, and approximately 100 ft above the current level of the river. Using these rough measurements, an approximate and slightly revised location for the Fairfax Sandblows site is depicted in Figure 2. Based on this revised site location, it falls very close to what would have been the shoreline of the Champlain Sea and what would have been the mouth of the Lamoille River.

Although Ritchie (1957; 1969) was the first to propose a connection between the Champlain Sea and Paleoindian occupations, it was Loring’s (1980) important paper that first marshaled a significant data set in an attempt to correlate these entities. At the time of Loring’s (1980) article, however, information generated through Quaternary geological research was contradictory, and generally placed the inception and duration of the Champlain Sea at a time prior to the first dated Paleoindian occupations in the Northeast. Moreover, as Loring (1980) himself noted, better quantification of projectile point styles or types would enhance the resolution of the correlation between the Champlain Sea and Paleoindian sites.

Fortunately, progress has been made in the last 30 years, in refining Paleoindian projectile point typologies and in dating and mapping the most recent stages of the Champlain Sea (Robinson 2008). Although a detailed discussion of this correlation

The Journal of Vermont Archaeology

Volume 9, 2008
Figure 2. Map depicting the location of the Fairfax Sandblows site (VT-FR-64) relative to the Champlain Sea maximum. Champlain Sea maximum shoreline modeled from Doll (1970), and from Chapman (1937), Gadd (1988), Loring (1980), and Wagner (1972). Map created using ESRI ArcView 9.2.
is beyond the scope of this paper, and will be explored by the authors elsewhere, a recent suite of Quaternary geological research has revised the inception and duration of the Champlain Sea (e.g., Cronin et al. 2008; Rayburn et al. 2005, 2007; Richard and Occhietti 2005; Ridge 2003; Ridge et al. 1999; Rodrigues 1988), and places it squarely at a period coeval with Paleoindian occupations (see Bradley et al. 2008; Newby et al. 2005; Spiess et al. 1998). As such, the location of the Fairfax Sandblows site likely conforms to a seaside landform that may also correspond to a paleoestuary (Figure 2), though the rate of regression of the Champlain Sea from its maximum has yet to be adequately quantified. Obviously, this demonstrated correlation has important implications with regard to Paleoindian subsistence, sea sonality, territoriality and cultural conceptualizations of a rapidly changing landscape, among other factors.

Finally, the information provided by the letters Fisher wrote to the AMNH, the NYSM and the Fleming Museum suggest that the Fairfax Sandblows was one of the first, if not the first, Paleoindian site to be reported from New England, followed very shortly thereafter by the reporting of the Reagan site. Unfortunately, the early reports by Fisher would not be seriously pursued by the scholarly community for another twenty years.

Acknowledgements

The authors gratefully acknowledge the influence of our mentor, the late James B. Petersen, and his unfinished efforts to reconstruct the early history of Vermont archaeology and reassemble collections from the closely related Reagan site. Thanks to Jim Bradley, Stephen Loring, Art Spiess, and Giovanna Peebles for their helpful advice and correspondence and to the American Museum of Natural History, the New York State Museum and the Fleming Museum for gracious assistance locating archival information. Any and all errors are the sole responsibility of the authors.

References Cited


The “Fairfax Sandblows” Site (VT-FR-64)

Chapdelaine, Claude

Chapdelaine, Claude (editor)

Chapdelaine, Claude

Chapdelaine, Claude (editor)

Chapman, D.H.


Deller, D. Brian, and Christopher J. Ellis

Doll, Charles G.

Ellis, Christopher, and D. Brian Deller


Gadd, Nelson R. (editor)
1988 *The Late Quaternary Development of the Champlain Sea Basin*. Geological Association of Canada, Ottawa, Canada.

Gramly, Richard Michael


Gramly, Richard Michael, and Stephen L. Cox

Hamilton, Nathan D., and Stephen G. Pollock

Huden, John C. (editor)

Lavin, Lucianne, and Donald R. Prothero

Loring, Stephen
Meltzer, David J.

Newby, Paige, James Bradley, Arthur Spiess, Bryan Shuman, and Phillip Leduc

Pollock, Stephen G.

Pollock, Stephen G., Nathan D. Hamilton, and Richard A. Boisvert

Pollock, Stephen G., Nathan D. Hamilton, and Robson Bonnichson

Rayburn, John A., David A. Franzi, and Peter L. K. Kneupher

Rayburn, John A., Peter L. K. Kneupher, and David A. Franzi
2005 A Series of Large, Late Wisconsinan Meltwater Floods through the Champlain and Hudson Valleys, New York State, USA. Quaternary Science Reviews 24:2410-2419.

Richard, Pierre J. H., and Serge Occhitetti

Ridge, John C.

Ridge, John C., Mark R. Beason, Marc Brochu, Sarah L. Brown, Jamie W. Callahan, Glenn J. Cook, Robert S., and Nicholsom and Nathaniel J. Toll

Ritchie, William A.


Roberts, Jr., Frank H.H.

Robinson IV, Francis “Jess”
The “Fairfax Sandblows” Site (VT-FR-64)

Spiess, Arthur E., Deborah B. Wilson, and James Bradley

Storck, Peter J.

Thomas, Peter A., and Brian S. Robinson

Wagner, Philip W.

Wright, Henry T., and W. B. Roosa

Francis “Jess” W. Robinson IV received his bachelor’s degree from the University of Vermont in 1999, with a double major in Anthropology and Literature. Following several field seasons of archaeological work, Jess relocated to Canterbury, England, where he received his Master’s degree in Literature from the University of Kent, focusing on anthropological aspects of Modernist novels. Upon returning to the United States, Jess was hired by the University of Vermont Consulting Archaeology Program and has been a full-time research...
supervisor since 2002. He is also currently pursuing his Ph.D. at the University at Albany-SUNY. Jess is a previous contributor to the Journal and is a past president of The Vermont Archaeological Society.

John G. Crock is Assistant Professor of Anthropology at the University of Vermont and the Director of the UVM Consulting Archaeology Program. He received his Ph.D. from the University of Pittsburgh in 2000. As a UVM undergraduate in the 1980s, John was first introduced to the mysteries of Vermont Paleoindians by Professors William Haviland and the late Marjory Power.